Island Engineering: Rediscovering the Roots of Progress

About this Blog

This is a book-in-writing – or it could be a manual, a guide-book or a syllabus in innovative engineering. As implied, it seeks to integrate available relevant histories, knowledge, information, methods and plans from all possible sources, disciplines, fields of study and research, including laws, statutes or codes and other accepted indigenous, cultural, private and government beliefs, practices and standards of operation to formulate, design and implement programs and projects that concern the habitability, integrity, sustainability and posterity of an island of any size whatsoever. Technical talk aside, the layman would say this is a new way of looking at harnessing natural resources using traditional, organic or natural methods from ancient times while applying essential, effective and practicable principles of modern engineering to island development. The naturalist, on the other hand, would ask: How does a person, whose life and well-being totally depend on an island, care for himself, for others and for the island itself while allowing everything (humans and the environment) to thrive and grow for many generations?      

Certainly, the question has been asked. The answers, however, seem to be absent or, at the least, dispersed within the piling archives of human knowledge and left unappreciated and applied to make a lasting difference in our fast-changing and fast- deteriorating world. We can be easily mesmerized by flashy photos or concept designs of magnificent and gigantic structures vying to become the latest wonders of architecture and engineering which are supposedly meant to enhance transportation, communication, industry, commerce and habitation. Technology, the “latest” especially, has a way of distracting us from the “organic technology” that has worked for millennia without human hands and ideas tinkering with it and benefited them while allowing Nature to remain undisturbed and undiminished. But Mother Nature graciously gives in to our ways and still functions as much she can, according to her ancient ways. Until she can no longer give of herself. And who pays for her eventual failure?

For with every house or building we put up, we take from the land or the island, thus, changing everything that the land contains and supports. Cut a tree and you cut the natural support for light, water, air, soil, bacteria, insects, animals and humans that should have been maintained in order for the tree to support life and the environment the way it was supposed to achieve. Multiply that a hundred or more times on a small island and you practically kill the island. Look at a modern city. In a sense, it could also be an island – a dead island. Yes, there are humans living in it. But where are the fruits trees and their rich soil, the birds and their nests, the clean rivers and streams, the lakes and their thriving fauna, and the meadows and the grazing animals?

Could we not have built our homes without destroying all the things that made the island an island? The way ancient people did? Maybe it is too late to ask or even to go back. But we will try to answer the question and find ways to address certain problems that may help our modern ways become more responsive to the island’s – and our — well-being. That is the goal of Island Engineering through this blog.

Community-Writing a Book

Anyone is welcome to contribute to or comment on this work, whether you are a grade-schooler, a housewife, a father, a teacher, a dentist, an urban planner, a seaman, a carpenter, an architect, a professional engineer or a businesswoman. Whatever valuable input anyone might share toward forming a compendium on Island Engineering, as we will define it further here, will be a rock that will help build the foundation of a future source of information on how leaders, planners, communities and individuals can base or adapt their work and lives with sufficient confidence and intelligence to make important and well-informed decisions.

Although islands exist in all parts of the world, we will begin with the collective knowledge and experiences from one country, Philippines, land of birth and being for many of us. Having travelled and seen many of its emerald islands from the sky, on the land, by the coasts and under the seas, there is no doubt that these blessed islands possess all that a people could possibly need to live peacefully while being afforded with the freedom to enjoy the blessings of the islands through many generations. Although many natural and human-induced challenges persist and seem insurmountable, proper management using reliable and proven knowledge and technology will provide a bright promise for us to be equal to the many difficult tasks.

We now undertake this endeavor while keeping in mind our limitations imposed upon us by many unknown and unseen factors along the way. This first step in our journey gives us victory already.   

If you wish to comment or contribute any relevant idea or solution to this effort, please write in the box provided below or send an email to Vince Ragay at any of these addresses: [email protected] or [email protected]

Introduction

The Pilipino people live in an archipelago composed of more than 7,100 islands located in the typhoon-and-earthquake-prone, western limits of the Pacific Ocean, sharing that distinction with such nations as Japan, Taiwan, Korea, Borneo, Malaysia, Indonesia and Singapore. The predominantly freedom-loving and exuberant inhabitants consider each island a precious pearl or gem dropped from Heaven upon the waters of Southeast Asia. The legend may seem fanciful; however, it actually describes the multi-faceted value of each island not only to its residents and their neighboring island dwellers but also to all the tiny and large living organisms that form part of the web of life and the underlying ecosystem that further sustains the delicate balance of life within this precious gem.

Managing each unique island, therefore, involves precise knowledge and skills that would push the limits of any person or group tasked with the goals of maintaining balance and checking the equitable distribution of energy and resources for every vital, living inhabitant, no matter how small, within its outermost limits. For example, the marine life that thrives around a hectare-sized island within a ring of coral reefs presents a foundational support that can help sustain the protein source for land life (as food, fertilizer and supplementary nutrients), which in return, feeds back the same benefits in the form of waste that recycles through the growth and decomposition of flora and fauna, the effects of climatic and geologic processes, such as precipitation, weathering and erosion, and the symbiotic activities of humans.

But we paint an ideal picture, one that may have occurred thousands of years ago when only a handful of islanders dwelt on these islands. Today, the picture jumps forward to a chaotic interplay of natural and artificial processes where the ultimate victor is neither of the two. No matter how the ecosystem adapts to humans, there will inevitably result a corresponding decrease in the human capacity to survive, produce and reproduce with every adaptation that humans also create that, by itself, affects further the capacities of the ecosystem. An interesting case is the role that water plays as a resource, as well as a material component in the geophysical framework of the human environment. We will dwell on this matter in order to further illustrate and clarify the approach we wish to present in this series of lessons and discussions as we define and develop the whole idea of Island Engineering into a special and general field of study or research and one that has potential practical application.

Water as a Resource

Although not considered a nutrient, water is essential to life and its processes. Nothing, not even the entire biosphere (that part of the globe where life dwells), will exist without water. The Earth might as well be Mars or the Moon without water. Our planet is blessed with and has definitely been blessed by water, beyond the fundamental or organic meaning. Plants, animals and humans are more than 70% water, by weight alone. Water is practically a fuel more precious and more vital than oil. Without the continuing cycle of water as the dynamic backbone of the ecosystem, we would have no ecosystem to talk about, no biology, no life whatsoever.

In our effort to define Island Engineering, therefore, water will serve as a good starting point and process-flow determinant, so to speak. How and where it flows, literally and figuratively will guide us well in our task of creating a working model for every island. After all, an island is basically a piece of rock-and-soil material surrounded by water but is, in itself, invaded by water and is, in fact, dependent on water for its development as a productive, thriving island. An uninhabited rock can be an island as well; but it can still have life of some form that is somehow viable. Preserving and enhancing that life is part of Isle Engineering. Moreover, exploring the tiny island and discovering its secret nooks will contribute to our overall view of the scheme of things. For ultimately, while we may study a particular island, we also have the goal of studying the whole archipelago as one and how it relates to that island, for its coastlands and water currents somehow affect other islands and dwellers. For instance, did you know that seeds of various plants, coconut in particular, colonize other islands by floating and travelling long distances before germinating and growing into maturity? In a way, that is natural Island Engineering at work! No island is an island.

A coconut-forested island in Palawan

In the greater picture, water can sustain the life of a vast variety of life in an island that requires humans to step into the picture to provide the lead in addressing the challenges and needs of every aspect of that life. “Subduing the land” roughly, but ultimately, defines the purpose of Island Engineering. For God did not make islands to keep them to themselves, sustain life, grow food and to feed nothing but mere “creeping things”. Then the greater mystery that needs solving is why humans exist at all and why many of them live on islands! So, we are in for an exciting search for vital answers. Looking at a map of the Philippines may dampen such childish enthusiasm. For an island the size of Luzon or Mindanao presents us with greater challenges than would an islet.

How water is harnessed, stored, distributed, utilized and disposed of takes the bulk of the tasks of what Island Engineering must address in order to ensure that this vital resource is made available to all island dwellers in sufficient and economical amount, where they need it and in a condition or quality that is most conducive to their survival and sustenance. The various fields of sciences and engineering already provide presently the compendium of knowledge and technology that together seek to solve issues and create programs and mechanisms that resolve them in efficient ways. Mountain dams, for example, help to store rainwater for our water supply needs. These dams also generate electricity to run our industries and homes. Water treatment plants make water potable for humans; and sewerage treatment plants, in turn, makes wastewater safe for the environment as it flows out. Although our water distribution systems are a limited, artificial construct integrated into the longstanding and pre-existing natural water cycle that has functioned since the beginning, it is one of the most efficient and affordable methods we have so far.

A process, though not perfect, can help us in many ways. But do we stop there? Can we innovate on it? Can we totally tweak dams in order to come up with one that may also be imperfect yet less destructive, less costly and more reproducible? These are some of the questions Island Engineering must look into.    

(Map and photo above courtesy of Google Map and www.google.com, respectively.)